Publications

 

General System Usage

  1. Noble, L. D., Colbrunn, R. W., Lee, D. G., Van Den Bogert, A. J., & Davis, B. L. (2010). Design and validation of a general purpose robotic testing system for musculoskeletal applications. Journal of Biomechanical engineering132(2), 025001.
    http://www.ncbi.nlm.nih.gov/pubmed/20370251

Knee

  1. Chokhandre, S., Neumann, E. E., Nagle, T. F., Colbrunn, R. W., Flask, C. A., Colak, C., . . . Erdemir, A. (2021). Specimen specific imaging and joint mechanical testing data for next generation virtual knees. Data Brief, 35, 106824. doi:10.1016/j.dib.2021.106824
    https://pubmed.ncbi.nlm.nih.gov/33659588/
  1. Grantham, W. J., Aman, Z. S., Brady, A. W., Rosenberg, S. I., Lee Turnbull, T., Storaci, H. W., . . . LaPrade, R. F. (2020). Medial Patellotibial Ligament Reconstruction Improves Patella Tracking When Combined With Medial Patellofemoral Reconstruction: An In Vitro Kinematic Study. Arthroscopy, 36(9), 2501-2509. doi:10.1016/j.arthro.2020.05.014
    https://pubmed.ncbi.nlm.nih.gov/32442704/
  1. Cone, S. G., Lambeth, E. P., Piedrahita, J. A., Spang, J. T., & Fisher, M. B. (2020). Joint laxity varies in response to partial and complete anterior cruciate ligament injuries throughout skeletal growth. J Biomech, 101, 109636. doi:10.1016/j.jbiomech.2020.109636
    https://pubmed.ncbi.nlm.nih.gov/32005549/
  1. Colbrunn, R. W., Dumpe, J. E., Nagle, T. F., Kolmodin, J. D., Barsoum, W. K., & Saluan, P. M. (2019). Robotically Simulated Pivot Shift That Represents the Clinical Exam. J Orthop Res, 37(12), 2601-2608. doi:10.1002/jor.24439
    https://www.ncbi.nlm.nih.gov/pubmed/31410883
  1. Cone, S. G., Lambeth, E. P., Ru, H., Fordham, L. A., Piedrahita, J. A., Spang, J. T., & Fisher, M. B. (2019). Biomechanical Function and Size of the Anteromedial and Posterolateral Bundles of the ACL Change Differently with Skeletal Growth in the Pig Model. Clin Orthop Relat Res, 477(9), 2161-2174. doi:10.1097/CORR.0000000000000884.
    https://www.ncbi.nlm.nih.gov/pubmed/31373947
  1. Cone, S. G., Piedrahita, J. A., Spang, J. T., & Fisher, M. (2019). In Situ Joint Stiffness Increases During Skeletal Growth but Decreases Following Partial and Complete Anterior Cruciate Ligament Injury. J Biomech Eng. doi:10.1115/1.4044582
    https://www.ncbi.nlm.nih.gov/pubmed/31513698
  1. Mutnal, A., Leo, B. M., Vargas, L., Colbrunn, R. W., Butler, R. S., & Uribe, J. W. (2015). Biomechanical analysis of posterior cruciate ligament reconstruction with aperture femoral fixation. Orthopedics38(1), 9-16.
    http://www.ncbi.nlm.nih.gov/pubmed/25611406

  1. Pathare, N. P., Nicholas, S. J., Colbrunn, R., & McHugh, M. P. (2014). Kinematic analysis of the indirect femoral insertion of the anterior cruciate ligament: implications for anatomic femoral tunnel placement. Arthroscopy: The Journal of Arthroscopic & Related Surgery30(11), 1430-1438.
    http://www.ncbi.nlm.nih.gov/pubmed/25241294
  1. Barsoum, W. K., Lee, H. H., Murray, T. G., Colbrunn, R., Klika, A. K., Butler, S., & Van den Bogert, A. J. (2011). Robotic testing of proximal tibio‐fibular joint kinematics for measuring instability following total knee arthroplasty. Journal of Orthopaedic Research29(1), 47-52.
    http://www.ncbi.nlm.nih.gov/pubmed/20665552
  1. Chokhandre, S., Colbrunn, R., Bennetts, C., & Erdemir, A. (2015). A Comprehensive Specimen-Specific Multiscale Data Set for Anatomical and Mechanical Characterization of the Tibiofemoral Joint. PloS one10(9), e0138226.
    http://www.ncbi.nlm.nih.gov/pubmed/26381404

Hip

  1. Bonner, T. F., Colbrunn, R. W., Bottros, J. J., Mutnal, A. B., Greeson, C. B., Klika, A. K., ... & Barsoum, W. K. (2015). The Contribution of the Acetabular Labrum to Hip Joint Stability: A Quantitative Analysis Using a Dynamic Three-Dimensional Robot Model. Journal of biomechanical engineering137(6), 061012.
    http://www.ncbi.nlm.nih.gov/pubmed/25759977
  1. Colbrunn, R. W., Bottros, J. J., Butler, R. S., Klika, A. K., Bonner, T. F., Greeson, C., ... & Barsoum, W. K. (2013). Impingement and stability of total hip arthroplasty versus femoral head resurfacing using a cadaveric robotics model. Journal of Orthopaedic Research31(7), 1108-1115.
    http://www.ncbi.nlm.nih.gov/pubmed/23494830

Spine

  1. Golubovsky, J. L., Colbrunn, R. W., Klatte, R. S., Nagle, T. F., Briskin, I. N., Chakravarthy, V. B., . . . Steinmetz, M. P. (2019). Development of a novel in vitro cadaveric model for analysis of biomechanics and surgical treatment of Bertolotti syndrome. Spine J. doi:10.1016/j.spinee.2019.10.011
    https://www.ncbi.nlm.nih.gov/pubmed/31669612
  1. Lee, B. S., Walsh, K. M., Healy, A. T., Colbrunn, R., Butler, R. S., Goodwin, R. C., . . . Mroz, T. E. (2018). Biomechanics of L5/S1 in Long Thoracolumbosacral Constructs: A Cadaveric Study. Global Spine J, 8(6), 607-614. doi:10.1177/2192568218759037
    https://www.ncbi.nlm.nih.gov/pubmed/30202715

  1. Lubelski, D., Healy, A. T., Mageswaran, P., Colbrunn, R., & Schlenk, R. P. (2019). Analysis of adjacent-segment cervical kinematics: the role of construct length and the dorsal ligamentous complex. J Neurosurg Spine, 1-8. doi:10.3171/2019.7.SPINE19279
    https://www.ncbi.nlm.nih.gov/pubmed/31628296
  1. van Dijk, L. A., Barrere-de Groot, F., Rosenberg, A., Pelletier, M., Christou, C., de Bruijn, J. D., & Walsh, W. R. (2020). MagnetOs, Vitoss, and Novabone in a Multi-endpoint Study of Posterolateral Fusion: A True Fusion or Not? Clin Spine Surg. doi:10.1097/BSD.0000000000000920
    https://www.ncbi.nlm.nih.gov/pubmed/31977334
  1. van Dijk, L. A., Duan, R., Luo, X., Barbieri, D., Pelletier, M., Christou, C., . . . de Bruijn, J. D. (2018). Biphasic calcium phosphate with submicron surface topography in an Ovine model of instrumented posterolateral spinal fusion. JOR Spine, 1(4), e1039. doi:10.1002/jsp2.1039
    https://www.ncbi.nlm.nih.gov/pubmed/31463454
  1. Walsh, W. R., Pelletier, M. H., Wang, T., Lovric, V., Morberg, P., & Mobbs, R. J. (2019). Does implantation site influence bone ingrowth into 3D-printed porous implants? Spine J, 19(11), 1885-1898. doi:10.1016/j.spinee.2019.06.020
    https://www.ncbi.nlm.nih.gov/pubmed/31255790
  1. Mageswaran, P., Techy, F., Colbrunn, R. W., Bonner, T. F., & McLain, R. F. (2012). Hybrid dynamic stabilization: a biomechanical assessment of adjacent and supraadjacent levels of the lumbar spine: Laboratory investigation. Journal of Neurosurgery: Spine17(3), 232-242.
    http://www.ncbi.nlm.nih.gov/pubmed/22839756
  1. Perry, T. G., Mageswaran, P., Colbrunn, R. W., Bonner, T. F., Francis, T., & McLain, R. F. (2014). Biomechanical evaluation of a simulated T-9 burst fracture of the thoracic spine with an intact rib cage: Laboratory investigation. Journal of Neurosurgery: Spine21(3), 481-488.
    http://www.ncbi.nlm.nih.gov/pubmed/24949903
  1. Mageswaran, P., McLain, R. F., Colbrunn, R., Bonner, T., Hothem, E., & Bartsch, A. (2013). Plate fixation in the cervical spine: traditional paramedian screw configuration compared with unique unilateral configuration: Laboratory investigation. Journal of Neurosurgery: Spine18(6), 575-581.
    http://www.ncbi.nlm.nih.gov/pubmed/23600582
  1. Techy, F., Mageswaran, P., Colbrunn, R. W., Bonner, T. F., & McLain, R. F. (2013). Properties of an interspinous fixation device (ISD) in lumbar fusion constructs: a biomechanical study. The Spine Journal13(5), 572-579.
    http://www.ncbi.nlm.nih.gov/pubmed/23498926

  1. Healy, A. T., Lubelski, D., Mageswaran, P., Bhowmick, D. A., Bartsch, A. J., Benzel, E. C., & Mroz, T. E. (2014). Biomechanical analysis of the upper thoracic spine after decompressive procedures. The Spine Journal14(6), 1010-1016.
    http://www.ncbi.nlm.nih.gov/pubmed/24291701

  1. Lubelski, D., Healy, A. T., Mageswaran, P., Benzel, E. C., & Mroz, T. E. (2014). Biomechanics of the lower thoracic spine after decompression and fusion: a cadaveric analysis. The Spine Journal14(9), 2216-2223.
    http://www.ncbi.nlm.nih.gov/pubmed/24662217

  1. Healy, A. T., Sundar, S. J., Cardenas, R. J., Mageswaran, P., Benzel, E. C., Mroz, T. E., & Francis, T. B. (2014). Zero-profile hybrid fusion construct versus 2-level plate fixation to treat adjacent-level disease in the cervical spine: Laboratory investigation. Journal of Neurosurgery: Spine21(5), 753-760.
    http://www.ncbi.nlm.nih.gov/pubmed/25170655

  1. Healy, A. T., Lubelski, D., West, J. L., Mageswaran, P., Colbrunn, R., & Mroz, T. E. (2016). Biomechanics of open-door laminoplasty with and without preservation of posterior structures. Journal of Neurosurgery: Spine24(5), 746-751.
    http://www.ncbi.nlm.nih.gov/pubmed/26799115

  1. Kshettry, V. R., Healy, A. T., Colbrunn, R., Beckler, D. T., Benzel, E. C., & Recinos, P. F. (2016). Biomechanical evaluation of the craniovertebral junction after unilateral joint-sparing condylectomy: implications for the far lateral approach revisited. Journal of Neurosurgery, 1-8.
    https://www.ncbi.nlm.nih.gov/pubmed/27739941

Foot/Ankle

  1. Lee, D. G., & Davis, B. L. (2009). Assessment of the effects of diabetes on midfoot joint pressures using a robotic gait simulator. Foot & ankle international30(8), 767-772.
    http://www.ncbi.nlm.nih.gov/pubmed/19735634

Shoulder

  1. Wermers, J., Schliemann, B., Raschke, M. J., Michel, P. A., Heilmann, L. F., Dyrna, F., . . . Katthagen, J. C. (2021). Glenoid concavity has a higher impact on shoulder stability than the size of a bony defect. Knee Surg Sports Traumatol Arthrosc. doi:10.1007/s00167-021-06562-3
    https://pubmed.ncbi.nlm.nih.gov/33839898/
  1. Nolte, P. C., Miles, J. W., Tanghe, K. K., Brady, A. W., Midtgaard, K. S., Cooper, J. D., . . . Millett, P. J. (2020). The effect of glenosphere lateralization and inferiorization on deltoid force in reverse total shoulder arthroplasty. J Shoulder Elbow Surg. doi:10.1016/j.jse.2020.10.038
    https://pubmed.ncbi.nlm.nih.gov/33290849/
  1. Bokshan, S. L., DeFroda, S. F., Gil, J. A., Badida, R., Crisco, J. J., & Owens, B. D. (2019). The 6-O'clock Anchor Increases Labral Repair Strength in a Biomechanical Shoulder Instability Model. Arthroscopy, 35(10), 2795-2800. doi:10.1016/j.arthro.2019.05.012
    https://www.ncbi.nlm.nih.gov/pubmed/31395394
  1. Bokshan, S. L., Gil, J. A., DeFroda, S. F., Badida, R., Crisco, J. J., & Owens, B. D. (2019). Biomechanical Comparison of the Long Head of the Biceps Tendon Versus Conjoint Tendon Transfer in a Bone Loss Shoulder Instability Model. Orthop J Sports Med, 7(11), 2325967119883549. doi:10.1177/2325967119883549
    https://www.ncbi.nlm.nih.gov/pubmed/31803788
  1. Nacca, C., Gil, J. A., Badida, R., Crisco, J. J., & Owens, B. D. (2018). Critical Glenoid Bone Loss in Posterior Shoulder Instability. Am J Sports Med, 46(5), 1058-1063. doi:10.1177/0363546518758015
    https://www.ncbi.nlm.nih.gov/pubmed/29537865
  1. Nacca, C., Gil, J. A., DeFroda, S. F., Badida, R., & Owens, B. D. (2018). Comparison of a Distal Tibial Allograft and Scapular Spinal Autograft for Posterior Shoulder Instability With Glenoid Bone Loss. Orthop J Sports Med, 6(7), 2325967118786697. doi:10.1177/2325967118786697
    https://www.ncbi.nlm.nih.gov/pubmed/30090835
  1. Kaar, S. G., Fening, S. D., Jones, M. H., Colbrunn, R. W., & Miniaci, A. (2010). Effect of humeral head defect size on glenohumeral stability a cadaveric study of simulated Hill-Sachs defects. The American journal of sports medicine38(3), 594-599.
    http://www.ncbi.nlm.nih.gov/pubmed/20194958

Wrist

  1. Badida, R., Garcia-Lopez, E., Sise, C., Moore, D., & Crisco, J. (2020). An Approach to Robotic Testing of the Wrist Using 3-D Imaging and a Hybrid Control Strategy. J Biomech Eng. doi:10.1115/1.4046050
    https://www.ncbi.nlm.nih.gov/pubmed/31960897

Elbow

  1. Frangiamore, S. J., Bigart, K., Nagle, T., Colbrunn, R., Millis, A., & Schickendantz, M. S. (2018). Biomechanical analysis of elbow medial ulnar collateral ligament tear location and its effect on rotational stability. J Shoulder Elbow Surg, 27(11), 2068-2076. doi:10.1016/j.jse.2018.05.020
    https://www.ncbi.nlm.nih.gov/pubmed/30076036

Have a question or need a custom quote?

Designed with flexibility and customization in mind, simVITRO® can be configured to provide unique solutions to your challenges. Our team’s extensive experience allows us to provide turn-key solutions based on our systems engineering approach. Learn More…